
Journal of Magnetism and Magnetic Materials 544 (2022) 168680

Available online 22 October 2021
0304-8853/© 2021 Published by Elsevier B.V.

Magnetic anisotropy in permalloy antidot square lattice 

T.Y. Wang a,b, H.-S. Han c,d, C. Su a,b,e, Q. Li a,f, M. Yang a,g, Weilun Chao c, Xixiang Zhang h, 
C. Hwang i, A. Zettl a,b,e, M.Y. Im c, Z.Q. Qiu a,b,* 

a Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA 
b Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 
c Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 
d Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea 
e Kavli Energy NanoScience Institute at the University of California, Berkeley, CA, USA 
f National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China 
g Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China 
h Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia 
i Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340, Korea  

A B S T R A C T   

Magnetic anisotropy of Permalloy (Py) antidot square lattice was investigated by torquemetry method using Rotation Magneto-Optic Kerr Effect (ROTMOKE). We 
find that there exists a field-dependent 4-fold magnetic anisotropy with the easy magnetization axis along the [11] axis of the antidot square lattice. In addition, there 
also exists an artifact of a uniaxial magnetic anisotropy in ROTMOKE result. We show that both results are due to the period wiggling of the magnetization in space 
which was confirmed by magnetic imaging using magnetic transmission soft x-ray microscopy (MTXM). Micromagnetic simulation from MuMax3 supports the 
wiggling structure of the magnetization, as well as reproduces ROTMOKE result. A simplified model was developed based on the periodic wiggling of the magne
tization and successfully explored the physical origin of the field-dependent 4-fold anisotropy and the artifact of the uniaxial anisotropy.   

1. Introduction 

Magnetic nanostructures have attracted much interest due to their 
novel magnetic properties as well as their application potentials in 
spintronics technology [1]. While layered magnetic nanostructures 
usually employ interfacial/interlayer interactions to generate various 
magnetoelectronic properties such as the giant magnetoresistance [2,3] 
and tunneling magnetoresistance [4,5], magnetic dots/antidots are 
generally aimed to modulate spins laterally to create new magnetic 
states such as spin ice states [6], and magnetic vortices/skyrmions 
[7–9]. For the latter topic of magnetic dot/antidot nanostructures, array 
of periodically distributed dots or holes (antidots) are usually created to 
modulate the magnetization of a thin film at sub-micron length scale 
using various methods such as lithography, shadow mask growth, and 
self-assembly, etc [10]. 

In terms of experimental techniques, magnetic measurement usually 
involves two types of techniques, one measuring the macroscopic 
magnetization such as the torquemetry [11], hysteresis loop comparison 
[12], and Ferromagnetic Resonance (FMR) [13], etc., and the other 
probing the spatial distribution of the magnetization such as magnetic 
force microscopy (MFM) [14], photoemission electron microscopy 

(PEEM) [15], and scanning electron microscopy with polarization 
analysis (SEMPA) [16], etc. Each technique has its strength but also 
weakness. For example, macroscopic measurement can usually retrieve 
the anisotropy value from experiment but cannot reveal the microscopic 
origin. MFM has a high spatial resolution but probes only the stray field 
produced by the magnetic charges thus usually has to combine with 
micromagnetic simulation to reconstruct the in-plane magnetization 
distribution. In contrast, PEEM and SEMPA can probe magnetic 
component directly in all directions but have to be operated in the 
absence of external magnetic field. As a practical approach, there is a 
need to employ several complimentary measurement techniques in 
order to gain comprehensive information of the magnetic 
nanostructures. 

In terms of magnetic properties in magnetic dot/antidot structures, 
magnetic anisotropy has been one of the intensely investigated proper
ties because of its important role in high-density magnetic information 
technology [17,18]. The overall goal of this research direction is to 
achieve a tunable magnetic anisotropy [19] by tailoring the geometry of 
the system such as the shape, size, and spatial distribution of the dot/ 
antidot, etc [20–22]. Most of the studies have taken the advantage of 
magnetic shape anisotropy that magnetic charges at the dot/antidot 
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boundaries introduce additional magnetic dipolar interaction. A repre
sentative system is the square lattice of magnetic dots/antidots synthe
sized from a magnetic thin film. It was found that a 4-fold anisotropy 
could be induced in such system with the hard magnetization axis along 
the directions connecting nearest neighboring dots/antidots 
[13,23–26]. Although MFM images and numeric micromagnetic simu
lations suggest non-uniform spin configurations in the patterned nano
structures [23,27–29], direct determination of the in-plane 
magnetization remains elusive which obscures the relation between the 
magnetic anisotropy and the real-space spin configuration. Although 
there has been an argument that a uniform magnetization should not 
lead to a magnetic anisotropy in a square antidot array [23], it is unclear 
if such argument would still be valid as the antidot size becomes com
parable to the antidot separation distance. In addition, it is puzzling that 
the anisotropy magnitude decreases with increasing the applied mag
netic field even though such dependence offers a new opportunity to 
tailor the magnetic anisotropy [30]. 

In this paper, we report a systematic study of the magnetic anisot
ropy in permalloy (Py) antidot square arrays. Using rotational magneto- 
optic Kerr effect (ROTMOKE), we show a clear field-dependent four-fold 
magnetic anisotropy as well as an artifact of uniaxial anisotropy, indi
cating a physical origin of a spatial variation of the magnetization. By 
imaging the magnetic structure using full field magnetic transmission 
soft X-ray microscopy (MTXM), we directly revealed the in-plane 
wiggling structure of the Py magnetization and its behavior at 
different external magnetic fields. This spatial variation of the magne
tization explains both the field-dependent four-fold anisotropy and the 
artifact of the uniaxial anisotropy in the ROTMOKE measurement. We 
further performed micromagnetic simulation and the result agrees 
nicely with the experimental observations. Finally, we offered a 
simplified model to reveal the physical origin of the 4-fold anisotropy 
and the artifact of the uniaxial anisotropy. 

2. Experiment 

Square lattice of Py antidots was prepared by depositing Py on top of 
Quantifoil holey carbon grid at room temperature by an e-beam evap
orator in an ultrahigh vacuum system with a base pressure of 5×10− 10 

Torr. Py was chosen because it has negligibly small magnetic anisotropy 
so that magnetic anisotropy in Py antidot square arrays comes entirely 
from the patterned structure. The holey carbon grid is made of a 15 nm 
thick holey carbon film containing a square array of 1μ m-diameter 
circular holes with a center-to-center distance of 1.6μ m. Py film 
deposited on top of this holey carbon grid naturally forms a film with 
arrays of antidot forming at the locations of the holes. The circular shape 
of the antidot ensures that each dot alone does not generate magnetic 
anisotropy so that the macroscopic anisotropy has to come from the 

global antidot square lattice. SEM image confirms the formation of the 
Py antidot flat film with desired sizes (Fig. 1). 

ROTMOKE measurement was performed at room temperature on the 
Py antidot sample. The in-plane projection of the incident laser beam 
was set to be parallel to the nearest neighbor antidots axis. As an in- 
plane magnetic field rotates in the film plane, the ROTMOKE measures 
the projection of the magnetization along the optical plane from which 
the angle between the magnetization and the optical plane could be 
retrieved. Then the angular difference between the magnetic field and 
the magnetization contains information of the magnetic anisotropy. 
Detailed description of the ROTMOKE instrument and principle can be 
found in our previous paper [31]. 

MTXM measurement was performed at room temperature at beam
line 6.1.2 of the Advanced Light Source at Lawrence Berkeley National 
Laboratory. Off-orbit emitted radiation provides elliptically polarized x- 
rays which illuminates the sample after passing a condenser zone plate. 
Another micro zone plate then projects a full field image onto a CCD 
camera that is sensitive to soft x-rays. External magnetic field generated 
by a solenoid was applied along the sample surface. At the Fe L3 ab
sorption edge (708 eV), the absorption of x-ray transmitted through the 
Py film depends on the relative angle between the beam direction and 
the local magnetization [known as x-ray magnetic circular dichroism 
(XMCD)], which gives magnetic contrast in the image [32]. To obtain 
the in-plane magnetic components, the sample was mounted at 60◦

angles with respect to the x-ray propagation direction. 
As shown in the next section, a combination of ROTMOKE, MTXM, 

and micromagnetic simulations offers a comprehensive understanding 
of the fundamental origin of the antidot-induced magnetic anisotropy. 

3. Result and discussion 

3.1. MOKE and ROTMOKE result 

We first present the result of hysteresis loop measured by magnetic- 
optic Kerr effect (MOKE) and torque curve measured by ROTMOKE on a 
70 nm thick Py antidot array. [10] and [11] directions of the antidot 
square array are defined in Fig. 1. Hysteresis loops for magnetic field 
along [10] and [11] axes in Fig. 2 show clearly that it is easier to saturate 
the magnetization in [11] direction than [10] direction, showing that 
the magnetic easy axis is parallel to [11] axis. 

Next, we present the ROTMOKE result. For an in-plane magnetic 
field applied to the film with uniform magnetization, the magnetic en
ergy per unit volume is 

E = − HMScos(θ − φ) − K2cos2(φ − φ2)+K4sin2(φ)cos2(φ) (1)  

where MS is the saturation magnetization, H is the magnitude of the 

Fig. 1. SEM image of 70 nm-thick Py antidots square array on Quantifoil holey carbon grid.  
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applied magnetic field, K2 is the uniaxial magnetic anisotropy, K4 is the 
4-fold magnetic anisotropy, and θ and φ are the angles of the magnetic 
field and the magnetization relative to the [10] direction of the antidots 
lattice, respectively. φ2 defines the easy (K2 > 0) or hard (K2 < 0) 
magnetization axis of the uniaxial magnetic anisotropy. Minimizing the 
energy with respect to φ leads to the magnetic torque [l(φ)] needed to 
achieve equilibrium state. 

l(φ) ≡ Hsin(θ − φ) =
1
2
HK2 sin[2(φ − φ2)] +

1
4

HK4 sin(4φ) (2)  

where HK2 = 2K2/Ms, HK4 = 2K4/Ms are the uniaxial anisotropy and 4- 
fold magnetic anisotropy fields, respectively. 

To have a unique magnetic torque at a given magnetic field, the field 
has to be strong enough to wipe out all irreversible magnetic domains. 
Therefore, we performed ROTMOKE measurement with the magnetic 
field greater than ~500 Oe above which the hysteresis disappears even 
along the hard axis (Fig. 2). It should be noted that the magnetizations of 
Py antidots film are not saturated to have all spins in exact the same 
direction during the ROTMOKE measurement, as will be shown in 
MTXM images later in this paper. For a given direction of the field (θ), 
the magnetization angle (φ) is determined from the ROTMOKE signal 
which is proportional to cosφ. Then the magnetic torque of Hsin(θ − φ) is 
constructed as a function of φ. Fig. 3 depicts a representative ROTMOKE 
result at H = 600 Oe. 

The magnetic torque oscillates with φ with a periodicity of 90◦

[Fig. 3(a)], showing the existence of a 4-fold magnetic anisotropy. 
Looking in details, the 4-fold oscillation of the torque does not have the 
same peak heights. In fact, the 1st and 3rd peaks have the same height 
which is less than the height of the 2nd and 4th peaks. This behavior 
indicates the existence of a uniaxial anisotropy (HK2 ∕= 0) in addition to 
the 4-fold anisotropy (HK4 ). A fitting of the experimental data using Eq. 
(2) yields HK2 = − 104 ± 4 Oe, φ2 = − 2.2 ± 1.3◦ , and HK4 =

− 181 ± 10Oe. The negative value of HK4 indicates that [10] and [01] 
axes are the hard magnetization axes and [11] and [11] axes are the easy 
magnetization axes of the 4-fold magnetic anisotropy. 

In a system with a perfect 4-fold symmetry, uniaxial magnetic 
anisotropy is forbidden. However, uniaxial anisotropy could be induced 
by breaking the 4-fold symmetry such as by different lengths of the 
antidot along [10] and [01] axes [30] or by off-normal growth of the 
magnetic film [33]. We checked our sample carefully and find no evi
dence of elliptical shape of the antidots (Fig. 1). We also grew the Py 
carefully with normal directional growth by facing the evaporator 

directly to the substrate. Therefore, we believe that the uniaxial 
anisotropy should be an artifact appeared in the ROTMOKE measure
ment. To prove this, we rotated the sample by 90◦ and performed the 
ROTMOKE measurement again. If the uniaxial anisotropy were a real 
existence in the sample, the easy magnetization axis of the uniaxial 
anisotropy would have been changed by 90◦ (e.g., φ2 should increase by 
90◦) while keeping the 4-fold anisotropy unchanged. Consequently, the 
magnitudes of the four peaks in Fig. 3(a) would have been changed 
accordingly with the height of the 1st and 3rd peaks greater than the 
height of the 2nd and 4th peaks. Our ROTMOKE result after the sample 
rotation [Fig. 3(b)], however, is identical to the ROTMOKE result before 
the sample rotation [Fig. 3(a)]. In fact, the same fitting applied to Fig. 3 
(a) fits Fig. 3(b) perfectly (red color solid line), proving that the uniaxial 

Fig. 2. Hysteresis loop along [10] and [11] directions of the Py antidot square 
lattice measured by MOKE. Hysteresis loop fully closes at around 500 Oe. 

Fig. 3. ROTMOKE result. Magnetic torque l(φ) at H = 600 Oe with the optical 
plane parallel to a, [10] axis, and b, [01] axis of the sample, respectively. In 
experiment, a and b were achieved by fixing the optical plane in space but 
rotating sample by 90◦ around the surface normal direction. The identical result 
of a and b shows that the uniaxial anisotropy is an artifact. c, Redefined torque 
L(φ) using Eq. (3) to eliminate the artifact of the uniaxial anisotropy. Red lines 
are fitting curves using Eq. (2). 
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anisotropy is an artifact in the ROTMOKE measurement rather than a 
real existence in the sample. We will discuss the origin of this artifact 
later in the paper. 

To eliminate the artifact of the uniaxial anisotropy in the torque, we 
reinforce the 4-fold symmetry by redefining the torque as: 

L(φ) =
1
2
[
l(φ)+ l

(
φ + 900) ] (3) 

L(φ) obtained in this way [Fig. 3(c)] eliminates the artifact of the 
uniaxial anisotropy and can be fitted using Eq. (2) with HK2 = 0 to obtain 
the 4-fold anisotropy HK4 . In fact, the HK4 obtained in this way has the 
same value as the fitting result of HK4 obtained from Fig. 3(a) within the 
error bar from the fittings. 

Fig. 4 shows the fitting result of HK4 (blue squares) above 500 Oe 
(below 500 Oe irreversible hysteresis appears so that ROTMOKE method 
is no longer valid). The result shows that the magnitude of the 4-fold 
anisotropy (|HK4 | = − HK4 ) decreases with increasing the field, in 
agreement with result reported in literature [23]. Moreover, we find that 
the magnitude of the 4-fold anisotropy decreases monotonically with 
increasing the magnetic field. This behavior implies that the 4-fold 
magnetic anisotropy should vanish in the limit of H→∞. Note that 
magnetization becomes uniform (∇M→= 0) in the limit of H→∞ and that 
the magnetic charge distribution at the boundary of a circular disk with 
a uniform magnetization corresponds to a magnetic moment at the 
center of each antidot, the vanish of the 4-fold magnetic anisotropy is 
the expected fact that magnetic dipolar interaction should not give a 4- 
fold shape anisotropy for a uniform magnetization in a square lattice (we 
will give a rigorous proof of this assertion later in this paper). Therefore, 
the non-zero 4-fold magnetic anisotropy in our antidot square lattice 
must come from a non-uniform magnetization in space at finite mag
netic field. 

3.2. Magnetic images 

To prove the inhomogeneity of the magnetization in space, we ob
tained magnetic images of 100 nm thick Py antidot square lattice using 
MTXM at room temperature. The MTXM images (Fig. 5) with an in-plane 
magnetic field show clearly that the magnetization is not aligned uni
formly to the field direction. Instead, the magnetization tends to deviate 
away from the field direction especially at low magnetic field. In 
particular, the magnetization in region between two nearest neighbor 
antidots tends to be parallel to the antidot boundary, leading to a 

periodic wiggling of the magnetization around the antidot square lattice. 
The wiggling amplitude of the magnetic texture reduces gradually with 
increasing magnetic field, approaching a uniform saturation magneti
zation to the field direction as the in-plane field increases to 1 kOe which 
is the maximum in-plane field available at the MTXM beamline. 

Qualitatively, the wiggling of the magnetization can be understood 
by considering the magnetic charges at the antidot boundary. For a 
uniform magnetization along the field direction, magnetic charges are 
induced at the antidot boundary. To reduce the magnetic dipolar 
interaction energy, magnetic charges at the antidot boundary should be 
reduced by rotating the magnetization between two nearest neighbor 
antidots along [10] axis towards the [01] or [01] direction. Similarly, 
the magnetization between two nearest neighbor antidots along [01] 
axis should rotate towards [10] or [10] direction to reduce the magnetic 
charges at the antidot boundary. Therefore, a uniform magnetization in 
the field direction should rotate in opposite directions along the [10] 
and [01] axes to reduce the magnetic charges at the antidot boundaries, 
leading to a periodic wiggling of the magnetization in the antidot square 
lattice. Since this wiggling of magnetization is at the expense of Zeeman 
energy by rotating the magnetization away from the magnetic field di
rection, the wiggling amplitude should be obviously reduced by 
increasing the magnetic field. 

3.3. Micromagnetic simulation 

To have a quantitative analysis, we have to consider a continuous 
variation of the magnetization in whole space. To do so, we performed 
micromagnetic simulation using MuMax3 on a 100 nm Py thick antidot 
film with the same geometry parameters as in the experiment. The 
simulation result (Fig. 5) indeed shows the same trend of wiggling 
magnetization as observed by the MTXM with the wiggling amplitude 
decreasing with increasing magnetic field. Furthermore, we find that the 
wiggling magnetization follows exactly 4-fold symmetry as the magnetic 
field direction rotates. This is expected because in simulation we could 
ensure a prefect 4-fold symmetry of the antidot system. 

Then the interesting question is whether an artifact of uniaxial 
anisotropy would appear in the ROTMOKE measurement from a simu
lation on a perfect 4-fold antidot square lattice? To answer this question, 
we performed micromagnetic simulation of the process of ROTMOKE 
via MuMax3 on a 10×10 Py antidot square lattice (70 nm Py thickness, 
1μm-diameter hole, and 1.6μm period) for a rotating in-plane magnetic 
field of H = 500–700 Oe. For each step of the magnetic field angle (θ), 
equilibrium state of the magnetization in the MuMax3 simulation was 
achieved by relaxing the equilibrium state of the magnetization of the 
previous step. Because of the perfect 4-fold symmetry of our system, it 
turns out that simulation was needed only for 0◦

≤ θ ≤ 90◦ and simu
lation result for 90◦

≤ θ ≤ 360◦ can be simply obtained by extending the 
result of 00 ≤ θ ≤ 900 to the corresponding angular range. In this way, 
we obtained the magnetic state in the whole range of field angle from 0◦

to 360◦ with 5◦ per step. Next, for each field angle θ, we calculated the 
averaged projection of the magnetization to the [10] axis (Mx =

1
N
∑N

i=1cosφi) which is what ROTMOKE measures directly in experiment. 
The maximum value of Mx among all field angles is set to be the satu
ration magnetization (Ms) and then the averaged magnetization angle 

φ ≡ arccos
(

Mx
Ms

)

and magnetic torque l(φ) = Hsin(θ − φ) were obtained 

from the simulation and compared to the experimental ROTMOKE 
result. One of the simulated torque curves is shown in Fig. 6. 

The l(φ)vsφ relation obtained from the simulation agrees nicely with 
the ROTMOKE experiment result. HK4 values obtained by fitting the 
simulated l(φ)vsφ at several field strengths are shown in Fig. 4 for 
comparison with the experimental result. We would like to point out a 
few essential features from the simulation. First, it is clear that the 
magnetic anisotropy arises from the inhomogeneity of the magnetiza
tion in space, i.e., it is the wiggling of the magnetization in space that 

Fig. 4. Magnitude of HK4 from ROTMOKE experiment and MuMax3 simulation 
above 500 Oe. Dashed line represents HK4∝1/H relation from the simpli
fied model. 
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makes the spatially averaged φ different from the θ. Specifically, it is the 
magnetization between nearest neighbor antidots, which prefers its 
orientation parallel to [10] or [01] axis, that results in the macroscopic 
magnetic anisotropy. Second, the different peak heights in l(φ) (e.g., the 
1st and 3rd peak heights are less than the 2nd and 4th peak heights) 
show that an artifact of uniaxial anisotropy appears in the simulated 
l(φ)vsφ relation, in agreement with the experimental observation [Fig. 3 
(a) and (b)]. As shown in the next section, it is the broadening of the 
angular distribution of the magnetization that leads to the artifact of the 
uniaxial anisotropy. 

3.4. Simplified model 

While the micromagnetic simulation successfully reproduces exper
imental result, physical origin of the result remains obscure in the nu
merical calculations except the fact that it is the spatial variation of the 
in-plane magnetization that is responsible for the magnetic anisotropy. 
To explore the physical origin, we here discuss a simplified model to 
explain the 4-fold magnetic anisotropy and the artifact of uniaxial 
anisotropy in terms of the magnetization wiggling in space. We start by 
considering a two-dimensional antidot square lattice in xy plane with an 
in-plane magnetization. The total dipolar energy of the system is 

Fig. 5. Experimental images from MTXM and simulated images from MuMax3. a, d, g: Experimental MTXM images with in-plane magnetic field of 400, 600 and 800 
Oe, respectively, along the magnetic field direction as shown on the top left. b, e, h: Simulated MTXM images with the x-component of magnetization (Mx) rep
resented by the greyscale colormap shown on top. c, f, i: Colored images showing the magnetization direction in space. The colormap on top shows the magnetization 
angle φ(M) relative to the field direction. 

Fig. 6. An example of simulated torque l(φ) via MuMax3 at H = 600 Oe.  
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Ed =
∑

m→( r→)∙m→( r→’) − 3m→( r→)∙
(

̂r→− r→’
)

m→( r→’)∙
(

̂r→− r→’
)

| r→− r→’
|
3 (4) 

Using φ( r→) to specify the local angle between the local magnetic 
moment and the [10] axis of the antidot square lattice, it is easy to show 
that the change of the dipolar energy due to magnetization wiggling of 
φ( r→) = φM + δφ( r→) to the leading order of δφ( r→) is 

δEd = 3sin(2φM)
∑ [δφ( r→) + δφ( r→’) ]

[
(x − x’)

2
− (y − y’)

2 ]

2| r→− r→’
|
5 (5) 

We have employed the result of 
∑ δφ( r→)(x− x’)(y− y’)

| r→− r→
’
|
5

=
∑

δφ( r→’)(x− x’)(y− y’)

| r→− r→
’
|
5

= 0 in the derivation because of the inversion symmetry 

and the 4-fold symmetry of the antidot square lattice with circular 
shaped antidot. 

For uniform magnetization, δφ( r→) is independent of position so that 
φ( r→) = φM +const. corresponds to a uniform rotation of a uniform 
magnetization. Then Eq. (5) yields δEd = 0 because a 4-fold symmetry 

yields 
∑ (x− x’)

2
− (y− y’)

2

2| r→− r→
’
|
5

= 0. This is the result mentioned in previous 

section that dipolar interaction from a uniform magnetization in a 
square antidot lattice with 4-fold symmetry does not give rise to any 
magnetic anisotropy. 

To have a non-zero δEd, the local magnetic moments at r→ and r→’ 
need to twist oppositely [e.g., δφ( r→)) and δφ( r→’) have opposite signs] 
as (x − x’)

2
− (y − y’)

2 changes its sign under the action of x ↔ y. This 
corresponds to the scenario that the magnetization between neighboring 
antidots along [10] axis rotates in opposite direction as the magnetiza
tion between neighboring antidots along [01] axis. In another word, the 
magnetization needs to wiggle oppositely along the [01] and [01] axes 
in order to give rise to a non-zero magnetic anisotropy of δEd ∕= 0, which 
is exactly what was observed in our experiment. The physical origin of 
the opposite twisting angles of the magnetization along [10] and [01] 
axes is that the region between nearest neighbor antidot holes along 
[10] axis prefer the magnetization along [01] axis due to local shape 
anisotropy, which is equivalent to a local uniaxial anisotropy with [01] 
axis being the magnetic easy axis. Similarly, the region between nearest 
neighbor antidot holes along [01] axis has an equivalent local uniaxial 
anisotropy with [10] axis being the magnetic easy axis. To make this 
physical picture clearer, we further simplify the model by breaking the 
magnetization texture into two subsystems of M→1 and M→2 with M→1 and 
M→2 experiencing local uniaxial anisotropies (K) of [10] and [01] easy 
magnetic axis, respectively, as shown in Fig. 7. Although not accurate, 

this simplified model can catch the physical origin of all experimental 
observations. 

Without the two local uniaxial magnetic anisotropies or in the limit 
of H→∞, it is obvious that a uniform magnetization of M→1 = M→2 should 
be aligned to the magnetic field direction (H→), leading to an absence of 
the magnetic anisotropy. Adding the two local weak uniaxial anisot
ropies, M→1 should rotate slightly away from the field direction towards 
its [10] easy axis (φ1 < θ) while M→2 should rotate slightly away from the 
field direction towards its [01] easy axis (φ2 > θ), leading to the oppo
site twisting angles of M→1 and M→2. With the averaged magnetization 
angle of φM ≡ (φ2 + φ1)/2 and the small twisting angle amplitude of 
δ ≡ (φ2 − φ1)/2, it is easy to show that the magnetic energy is 

E = − Kcos2φ1 − HMScos(θ − φ1)

+Kcos2φ2 − HMScos(θ − φ2)

= 2cosδ[ − Ksin(2φM)sinδ − HMScos(θ − φM) ] (6) 

Minimizing the energy with respect to small δ and φM, we obtained 
the following result. 

δ =
K

HMS
sin(2φM) (7)  

Hsin(θ − φM) = −
K2

HM2
S

sin(4φM) (8) 

Eq. (8) corresponds to the torque Eq. (2) with a 4-fold anisotropy 
only (HK4 = − 4K2

HMS
). Therefore, our simplified model not only reproduces 

correctly the 4-fold anisotropy with [11] easy magnetization axis 
(HK4 < 0) but also a monotonically decrease of the anisotropy with 
increasing the magnetic field. In fact, the HK4 ∝1/H relation in Eq. (8) 
describes the experimental result fairly well (dashed line in Fig. 4). The 
[11] easy magnetization axis can be understood easily from this over
simplified model that for magnetic field applied in the [11] direction 
(H→//[11]), it is obvious that M→1 and M→2 should deviate away from H→

direction symmetrically towards [10] and [01], respectively, leading to 
an averaged magnetization (M→1 +M→2)/2 exactly in the H→ direction (e.g. 
easy magnetization axis). 

Last, we would like to discuss the artifact of the uniaxial magnetic 
anisotropy in ROTMOKE measurement. Precisely speaking, ROTMOKE 
measures the averaged projection of the magnetization to the [10] axis 
(cosφ = 1

N
∑N

i=1cosφi) and then converts the result to the averaged 

magnetization angle by φ = arccos

(

1
N
∑N

i=1cosφi

)

. For uniform magne

tization, this process makes no difference between φ and the magneti
zation angle of φM. Fore non-uniform magnetization, however, the 
magnetization angle determined by ROTMOKE is slightly greater than 
the averaged magnetization angle (φ > φM = 1

N
∑N

i=1φi). It is this dif
ference between φ and φM that results in the artifact of the uniaxial 
anisotropy in ROTMOKE because Hsin(θ − φ) ∕= Hsin(θ − φM). To un
derstand this artifact more clearly, we again use the simplified model to 
discuss how the difference between φ and φM results in a uniaxial 
anisotropy term in Eq. (8). Using the relation of 
cosφ = [cosφ1 +cosφ2]/2 = cosφMcosδ and Eq. (7), it is easy to derive the 
difference between φ and φM for small δ. 

φM = φ −

(
K

HMS

)2

sin(2φ)cos2(φ) (9) 

Substitute Eq. (9) into Eq. (8) leads to 

Hsin(θ − φ) = −
K2

2HM2
S

sin(2φ) −
5K2

4HM2
S

sin(4φ) (10) 

Fig. 7. Schematic drawing of the oversimplified model. M1 and M2 are the 
magnetizations of the two domains whose magnetic easy axes are parallel to 
[10] and [01] axes, respectively. As a magnetic field H is applied at an angle θ 
to the [10] axis, M1 and M2 will tilt away from the field direction towards their 
own easy axes, resulting in angles of α and β to the [10] axis. In the case 
depicted here, α < θ < β. 
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The first term at the right side of Eq. (10) corresponds to the uniaxial 
anisotropy in Eq. (2) with HK2 < 0 and φ0 = 0, in agreement with 
experimental observation. While Eq. (10) describes the experimental 
result qualitatively well, we would like to emphasize that the simplified 
model ignores many factors such as the coupling between M→1 and M→2 

and the spatial variation within M→1 and M→2. All these factors are ex
pected to modify the strength of HK2 and HK4 in Eq. (2) from the model. 
Nevertheless, our simplified model correctly reveals the physical origin 
of the field-dependent 4-fold anisotropy and the artifact of the uniaxial 
anisotropy. 

4. Summary 

In summary, we investigated the magnetic anisotropy of Py antidot 
square lattice using ROTMOKE. We showed that there exists a field- 
dependent magnetic anisotropy which is originated from the periodic 
wiggling of the magnetization in space. This inhomogeneity of the 
magnetic texture was confirmed by magnetic imaging using MTXM as a 
function of magnetic field. We also clarified the puzzle of the unexpected 
uniaxial magnetic anisotropy in ROTMOKE as an artifact due to the 
magnetization wiggling in space. Micromagnetic simulation result 
agrees very well with the experimental observation. We further pro
posed a simplified model to qualitatively explain the physical origin of 
the field-dependent 4-fold anisotropy and the artifact of the uniaxial 
anisotropy. Our investigation provides direct observation and explana
tion of the magnetic anisotropies in antidot square lattice. 
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José Anguita, Dimitrios Niarchos, Manuel Vázquez, Juan Escrig, José Miguel 
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